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Abstract: Static overbooking models are studied.    
Suppose that each reservation shows up  independently,  and  
that  the  probability  of  showing  up  is  identical  among  
all reservations.   Then, the random show demand follows 
the binomial distribution.  However, in practice some 
overbooking modules assume that the show demand is the 
product of the overbooking level and the random show-up 
rate.   The decision model embedded in a commercial 
revenue management system is misspecified.   In this article, 
we explore the consequences of the modeling error.   
Through numerical experiments, we find that the 
performance of the model with misspecification decreases as 
the show-up probability decreases.   Among our three 
choices of show-up rate distributions, the beta model 
performs best.    
 
Keywords: Revenue Management; Overbooking; 
Stochastic Model Applications; Operations Research 
 
I.  Introduction 
 
Overbooking is practiced by nearly all passenger airlines.   
They may accept more reservations than their fixed capacity 
in order to compensate for cancellations and no-shows, 
which could be as high as 50% [21].  The financial gain 
from the overbooking  practice  is  one  billion  US  dollars  
or more [1].  The overbooking module becomes 
indispensable to commercial revenue management (RM) 
systems.   
Generally speaking, the objective of the overbooking model 
is to find an overbooking level/limit-the maximum number 
of reservations to hold at any time-that minimizes an 
expected total cost.   The expected total cost is calculated 
with respect to the probability distribution of the show 
demand (show-ups), the total number of reservations that 
survive to the time of services.   The  total  cost  is  
comprised  of  an  oversale  cost,  which  occurs  if the  
realized  show  demand  exceeds  the  capacity,  and  a  
spoilage  cost,  which  occurs  if  the realized show demand 
is less than the capacity.   
The  functional  form  of  the  show-ups  can  affect  the  
overbooking  level  recommended by  the  model.    Two  
models  with  different  specifications  of  the  show  demand  
may  not lead  to  the  same  expected  total  costs,  and  they  
may  yield  different  overbooking  levels.  Models in 
practice commonly assume that the show demand is linear in 
the overbooking level;  i.e.,  given  the overbooking  level  x,  

the number  of show  demands  is  xR, where  the random  
variable  R  is  referred  to  as  the  show-up   rate.    Some  
commercial  RM  systems assume  the normal/Gaussian  
show-up  rate  distribution,  whose  the  mean  and  variance 
are periodically estimated from historical data [18].   
Although  the  above  specification  that  the  show  demand  
equals  the  product  of  the overbooking  level  and  the  
show-up  rate  is  simple  and  quite  prevalent  in  practice,  
it  is theoretical  incorrect  under  certain  conditions.    
Suppose  that (i) each  reservation  shows up  independently,  
and  that (ii) the  probability  of  showing  up  is  identical  
among  all reservations.  Then, the  show  demand  given  
the  overbooking  level  x follows  a  binomial distribution  
with  parameters ),( x , where is  the  show-up  probability.    

Under  conditions (i) and (ii),  the  linear  assumption  in  the  
airline's  decision  model  is  incorrect;  we say that a  model  
misspecification occurs, and that the airline makes a  
modeling  error.   
In the RM practice, there is an iterative process in which the 
control (e.g., the overbooking level) from the optimization 
model is enacted, the data (e.g., the realized show demands) 
are collected over several flight, the parameters (the mean 
and variance of the show-up rate distribution) are forecasted, 
and finally the new control is determined from the 
optimization model given the updated parameters.   In this 
article, we want to explore the consequences of the modeling 
error that the optimization model is misspecified.   
In  the  optimization  model,  we  consider  three  show-up  
rate  distributions,  namely normal,  beta,  and  deterministic.    
For  each  of  the  three  misspecified  models,  we  provide a  
closed-form  expression  for  the  overbooking  level.  To 
benchmark and evaluate these models, we construct a model, 
in which the show demand theoretically follows a binomial 
distribution.   We also obtain an optimal overbooking level 
with respect to the benchmark (binomial) model.    To  study  
the  behavior  of  the  iterative  process  with  the  
misspecified optimization  model,  we  perform  a  series  of  
numerical  experiments.   We find that as the iterative 
process goes on for a long time, the sequence of the average 
costs with the given misspecified model converges almost 
everywhere.    The long run average cost from using the 
misspecified model is greater than the optimal expected cost 
with the binomial model.   In all tested problem instances, 
the beta model outperforms the deterministic model and the 
normal model.  All three overbooking models are not robust 
to the modeling error.    
Overbooking models can be broadly categorized into two 
types, namely dynamic and static models.   In  the  static  
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models,  the  dynamics  of  reservation  requests  and  
customer cancellations  over  time  are  ignored.   In the 
dynamic models, such inter-temporal effects are explicitly 
accounted for.   An overview of the overbooking problem 
can be found in, e.g., [23] [17].   
The  dynamic  model  is  often  formulated  as  a  Markov  
decision  process.    Examples of  the  dynamic  overbooking  
problems  are  e.g., [4] [22].   In [22],  the  booking  horizon  
is  divided  into  a  number  of decision  periods;  in  each  
period  a  booking  request  from  a  certain  fare  class  may  
arrive, or  a  reservation  may  be  cancelled, nothing  
happens.    If the booking request arrives, then the decision 
is whether or not to accept the request.  In the terminal 
period, the expected cost associated with no-shows is 
incurred.   The distribution of the show demand is assumed 
to follow a binomial distribution.  The  objective  is  to  
maximize  the  expected  total  net  contributions  over the  
booking  horizon  and  the  terminal  period.  [3] study  the 
network dynamic overbooking model, in which each 
itinerary may require more than one legs  to  get  from  an  
origin  to  a  destination.   There are other extensions to the 
dynamic overbooking problem, e.g., the inclusion of the 
multiple reservation classes in [11].   
In this article, we do not study the dynamic overbooking 
problem and consider only the static overbooking model, 
since it is similar to the overbooking module in most 
commercial RM systems.  As in [22], the classical static 
overbooking model assumes that the show demand follows a 
binomial distribution.  [24] finds that the binomial 
distribution adequately fits the data collected from Tasman 
Empire Airways.   
Unlike  the  binomial  model,  several  static  overbooking  
models  assume  that  the  show demand  is  the  product  of  
the  overbooking  level  and  the  show-up  rate.    This 
approach is found in e.g., [13] [18] [15].    The random  
show-up  rate  can  be  modeled  using  a  parametric  
distribution,  such  as  uniform [13],  beta [15], and normal.  
[18] argue that  modeling  the  show-up  rate  as  the  normal  
random  variable, which  is  quite common  in  practice,  in  
not  appropriate.  They  use  a  nonparametric  method  and  
obtain a  histogram, in  which  the  number  and  size  of  
bins  are  constructed  based  on  a  wavelet method.  In  
these  articles,  static  overbooking  problems  are  studied  
alone  without  the iterative process.   In ours, the parameters 
of the show-up rate distribution are iteratively updated.   
There  is  substantial  literature  in  econometrics  and  
statistics  on  model  misspecification.    For  instance, [25] 
and [10] propose  "specification  tests"  for detecting if the 
regression model is misspecified.   In [19] and [9], the 
decision  maker  hypothesizes  that its  model is  
misspecified,  carries  out the  specification  test,  and  
generates  the  new  model  if  there  is  insufficient  
evidence  to reject the null hypothesis  of misspecification.   
Unlike these papers, we do not endow the airline with the 
specification test.   Such extension would be an interesting 
future research direction.   

 
There are few operations research papers on model 
misspecification.  [5] examine  consequences  of  model  
misspecification  in  the  two-class  passenger  RM problem.  
The airline makes incorrect assumptions about customer 
behaviors and chooses its optimal booking limit according to 
the Littlewood's rule.   The paper shows that the modeling 
error leads to the so called spiral-down effect.   The problem 
studied in [5] is the allocation problem not an overbooking 
problem, whereas ours is the overbooking problem. 
The rest of the paper is organized as follows.    In Section II, 
we present and analyze the overbooking models.  The 
iterative process is described in Section III.  In Section IV, 
we report the results of numerical experiments, and we 
conclude with some thoughts on future research directions in 
Section V.   Proofs are in the Appendix.   
 
II. Overbooking Problem 
 
We consider a static overbooking problem.  Because  of  
their  simplicity,  such  models become  the  basis  of  the  
most  widely  used  methodology  for  making  overbooking  
decisions [23].   Define  an  overbooking  problem  as  
determining  an overbooking  level  so  that  the  expected  
total  cost  is  minimized.  Since the airline operates many 
repeat flights, we can assume that the decision maker is risk 
neutral, and the objective of minimizing the expectation is 
appropriate. 
Throughout this article, let   be the set of natural numbers.  
Assume that the capacity is a known constant c.   If  an  
overbooking  level  is  set  to  x,  denote  the  random show 

demand as  S(x).   Let   0 be the per-unit oversale cost, 

and  0 the per-unit spoilage cost.   The expected total 

cost is given as:  

oa

sa
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~
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           (1) 

In  (1),  the  first  and  second  terms  are  the  oversale  and  
spoilage  costs,  respectively.   The oversale cost is 

computed as the per-unit oversale cost   times the nu

of show-ups that are denied boarding )([ cxS
spoilage cost is found similarly.   Consider the followi
problem:   
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~ , an optimal overbooking level that 

minimizes )(
~

xf  is identical to the one that minimizes f(x).   

Henceforth, Problem (2) is studied.   
The  airline  chooses  an  overbooking  level  that  minimizes  
the  expected  cost,  which  is calculated  with  respect  to  
the  distribution  of  the  show  demand  S(x).    In practice, it 
is usually the case that the airline does not know the actual 
distribution of the show demand, but it makes overbooking 
decisions based on perceived models.   We will shortly 
describe some perceived models, whose variants are 
embedded in some commercial RM systems.  To  evaluate  
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and  benchmark  the  perceived  models,  we  also  develop  
the  actual  model,  in which  the  distribution  of  the  show  
demand  is  known.   We adopt similar terminology as in [8, 
p.28].   
 
Actual Model  
Suppose  that x    reservations  have  been  made  in  
advance  and  that  each  reservation requires  a  single  seat  
(no  group  booking).  Conditions (i) and (ii) area assumed to 

hold.  With  the  actual  model,  the  show  demand  

follows  a  binomial  distribution  with parameters  x and  .   
Let be the objective function in (2), where we replace 

 

)(0 xS

)(0 xf

() xSo )(xS

Proposition 1.   With the actual model, the objective 

function   is convex on  )(0 xf .    An optimal 

overbooking level is given as                            
0x argmax  x{ }))1(()( 0 sos acxSPaa :  (3)                      

 
The optimality condition in (3) can be explained intuitively 
as follows.   Given  that  the current  overbooking  level  is   
x 1,  we  want  to  know  whether  to  overbook  one  more 
seat.  We would incur an oversale cost, if the show demand 
from the current reservations [of (x1) seats] is at least the 
capacity.  Hence, the expected marginal oversale cost 
is .  We would incur a spoilage cost, if the 

show demand from the current reservations is strictly less 
than the capacity.   Thus, the expected marginal spoilage 
cost is .    If  the  expected  marginal  

spoilage  cost  is  at  least  the  expected  marginal  oversale  
cost  [i.e., ],  then  we  

would overbook one more seat.   

))1(( 0 cxSPao 

)1(( 0 xSPas 

(( 0 xSPao

)c

)1  ))1(() 0 cxSPac s 

 
Perceived Model 
Journal articles on overbooking problems suggest  that  
airlines  typically  do  not  use  a  sophisticated  approach  to  
predict  the  show demand [18] [12].    It  is  commonly  
assumed  that  the  show  demand  is  linear  in  the  
overbooking level.    Specifically,  if  the  overbooking  level  
is  equal  to  x,  then  the  show  demand  is  , where  R  
is  the  show-up  rate.   The distribution of the show-up rate 
is constructed from historical data.     

xR

We restrict our attention to parametric methods and consider 
three distributions that the airline might use to model the 

show-up rate.  be the random show-up rate in perceived 

model  i.     has a degenerate distribution; i.e., P ( =  ) 

= 1, where   (0, 1) represents  a deterministic  show-up 
rate.  has a normal distribution with mean  

iR

1R 1R

2R   and 

variance , and   follows a standard beta distribution 

with shape parameters  a and  b.                                                         

2 3R
    

The deterministic model is documented in e.g., [23, p.147] 

implemented in practice [18].  The  beta  distribution  is  
used  to  model  the  show-up  rate  of air-cargo shipments  
[15].  The support of the standard beta distribution is the  
open  unit  interval  (0, 1),  whereas  that  of  the  normal  
distribution  is  the  whole  real line  (,).   Since  the  
show-up  rate  should  lie  between  zero  and  one,  the  beta  
model is more theoretically sound than the normal model.   
Suppose that the airline uses perceived model i.   Let  

iy

and [17, p.213].  A variant of the normal model is 
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where and 03   ,2 
)(~

ii yxObviou -hand n sly, the left  side i (4) is decreasing in .   

The overbooking level can be found via a classical search 
procedure.  The  solution  )(~

ii yx  found  in  the  proposition 

may  be  not  be  an  intege f  an  integer  overbooking  
level  is  desired,  one  could  set  it  to 

 

r.   I
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II.  Iterative Process 

uppose that the airline operates many repeat flights.    With  

that the airline updates information every m flights.   

 period, the forecast for three 

I
 
S
each  perceived  model,  an "optimal" overbooking level 
depends on the show-up rate distribution, whose parameters 
are  periodically  forecasted  from  the  historical  data.   As  
new  data  become  available,  the airline updates the 
parameters of the show-up rate distribution, the overbooking 
level is chosen  with  respect  to  the  updated  distribution,  
and  the  process  continues.    These are sometimes referred 
to as the iterative data collection-forecasting-optimization 
process. 
Suppose 
Define the t-th decision period to be a time in which the t-th 
forecast becomes available.   Each period of the process 
consists of three steps:  optimization, data collection, and 
forecasting, respectively.   
At the beginning the t-th
perceived models are ),(),,(, 3

2
21 tttttttt bayyy    .  

In the optimization step .  , the overbooking model i  is )(*
iti yx
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In the  data-collection  step,  the  airline  with  per d 
model i  realize m  show demands },...,1:{ mjsijt  , the 

random ample fr  the actual distri omial 
distribution with parameter )(*

itit yx and 

ceive

 s om bution [the bin
 ].  The realized 

show-up rate are ,...1:{ jrijt  ere  }, m wh
)(*

itit

ijts
r   .  In the 

forecasting step, the te  for the decision  
period  is  forecasted  based  on  the  simple  exponential  
smoothing  technique:  

itiititi yry )1(ˆ1,  
  where 

i

ijt yx

  next    show-up  ra

 (0, 1) is the smoothi  is  the  

imum  likelihood  estimator  (MLE)  of  the  rameters  
of the  show-up  rate  distribution,  determined  from  the  
realized  show-up  rate },...,1:{ mjrijt

ng parameter, and 
itr̂

pamax

 .  We restrict our 

attention to the exponentia method, because of 
its simplicity and popularity in practice [16, p.514] and  to  
the  maximum  likelihood  estimator,  because  it  is  one  of  
the  most  widely  used  methods  of  estimation  in  statistics 
[7, p.355].  After obtaining the new forecast 1, tiy , the 

process continue with the optimization step in per )1

l smoothing 

iod ( t  

to determine )( 1,
*

1,  titi yx , and so on.   

 
IV. N me

 

u rical Experiment 
 

 this section, two sets of numIn erical experiments are
conducted.   In the first set, we study the asymptotic 
behavior of the perceived model as the number of decision 
periods in the iterative process becomes very large.   In the 
second set, we compare the per-flight costs if the airline 
implements the overbooking level from each of the three 
perceived models.   To estimate the expected costs, we 
perform a Monte Carlo simulation.   With the perceived 
models, the parameters of the show-up rate distribution are 
updated every m = 30 flights, and the smoothing parameters 
are 321   = 0.5. 

 
As

h

ymp tic

 

t. Wi

 

w

to

   

 Be

th

ha Investvior igate 
arData for our numerical experiments e obtained from one of 

the leading passenger airlines in Thailand.   We  consider  a  
single-leg  weekly flight  with  capacity  c  =  338  seats.   
The airline  sets  the  per-unit  oversale  and  spoilage  costs  

to  os aa 4800, which  is  the reference  fare  of  the  

flig   the  actual  model,  given  the  overbooking  
level  x  the show demand follows the binomial distribution 
with parameters x  and   = 0.945.   
We  report  only  the  study  of  the  deterministic  model 
(perceived  model  1),  because the  asymptotic  behaviors  
of  the  other  perceived  models  look  similar.    Figure  1  
shows four  samples  paths,  when  the  initial  show-up  
rates  are  0.945,  0.945,  0.875  and  0.875, respectively  (as  
indicated  in  the  legend  of  the  figure).   From  Figure  1a,  
the  sequence  of the  overbooking  levels  does  not  
converge.    For  instance,  when  the  initial  show-up  rate is  

1  =  0 .945,  the  last  five  overbooking  levels  of  the  first  

sample  path  (the  solid  line) are  357, 357, 357, 357, 358, 
hereas those of the second sample path (the dotted line) are  

357, 358, 358, 357, 358.    

 
(a) Overbooking levels 

 
(b) Average costs 

Figure 1 Some sample paths with perceived model 1
 
 

igure 1b suggests that two sample paths of the average 
osts corresponding to  = 0 .945 converge, and so do the 

 

F
c   

1
other two corresponding to 2 = 0.875.   Moreover, all four 

sample  paths  of  the  average  costs  converge  to  a  single  
number,  which  is  approxi ately 16600.   With  different  
show-up  rates,  the  sequences  of  the  average  costs  do  
converge  to the same point.   When many replications are 
carried out, the figure (not shown) suggests that almost all 
sample paths converge to a single point.   We  conclude  that 
the long-run average  cost  converges  to  a  constant  with  
probability  one.     Nevertheless,  it  does  not converge  to  
the  optimal  cost  based  on  the  actual  model,  which  is  
16522.26.   Hence, the perceived model is not robust to the 
misspecification error.   
 
Performance Evaluatio

m

n 
  the  second  set  of  experiments,  let  m = 30,  c = 338 

 

In

and ),( aa = (4800,4800os ) (as  in  the  first  set).   Let the 

initial forecasts for the three perceived models be  

1 =0.945,  ),( 2
11   (0.945, 0.026) and ),( 11 ba  (62.327, 

3.855).  The show-up probabilities are varied:  {0.8, 0.5, 
}.   0.3
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Table 1 Performance of perceived mo ls 
Exp

de
eriment  =0.8  =0.5  =0.3 

Actual Model 31456.0 49769.6 58884.4
Peceived Model 1    

                 Mean 33513.2 57927.9 73317.0
                %dif 6.5 6.4 4.5 1 2

                     SE 9.2 15.9 19.3 
Peceived Model 2    

                 Mean 33527.2  57937.5 73382.2
                %dif 6.6 6.4 4.6 1 2

                     SE 9.5 15.8 19.4 
Peceived Model 3    

                 Mean 32848.9 .9 54448 66448.8
                %dif 4.4 .4 2.8 9 1

                     SE 12.3 52.3 93.2 

 
n each a x umbe ecision 
eriods to be 200.   (From Figure 1b, the average cost for a 

.   Nevertheless,  when  the  show-up probability  is  

odel  3)  is  lower  than  

 instance, with perceived 

 components of passenger 
irline RM.  Major airlines employ commercial RM systems 

  the  perceived model is employed.   We 

airline update the show-up 

tion 1.  It follows from [23, p.640] that 

 

I
p

 simulation replic tion, we fi  the n r of d

given initial show-up rate has already settled down since the 
200-th decision period.)  The  number  of  simulation  
replications  is  chosen  such  that the length  of the 95% 
confidence  interval  is within  10% of  the estimated  cost.   
Table  I shows the optimal expected cost based on the actual 
model, the estimated cost when the airline uses the 
overbooking level from the perceived model, the 
corresponding standard error,  and  the  percent  difference  
between  the  estimated  cost  and  the  optimal  expected 
cost.   
The percent difference with perceived model 1 ranges from 
7 to 25
high  (  =  0.8),  the  largest  percent  difference  is  no  
more  than  7,  which might  not  be  really  bad  from  some  
RM-industry  viewpoints.   This together with its simplicity 
appeals to some RM practitioners.   
In  each  of  the  three  experiments,  the  estimated  cost  
with  the  beta  model  (perceived m
that  with  the  normal  model  (perceived  model  2).     With  
the beta  distribution,  the  percent  difference  ranges  from  
4  to  13,  whereas  it  ranges  from  6 to  25  with  the  
normal  distribution.    From our experiences in running 
these numerical experiments, the computational times of 
both models are not much different.   Hence, the beta show-
up rate might be preferred to the normal show-up rate, since 
it yields a lower expected cost.   
From Table I, the percent difference increases as the show-
up probability decreases.  For
model 3, the percent difference increases from 4 to 9 to 13, 
when the show-up probability decreases from 0.8 to 0.5 to 
0.3.   If the airline anticipates a high show-up probability, 
then making an overbooking decision  with  the  perceived  
model  might  be  acceptable;  however,  if  it  anticipates  a  
low show-up  probability,  the  airline  needs  to  be  very  
cautious  using  the  overbooking  level recommended by the 
perceived model, since the performance of the perceived 
model gets worse when the show-up probability decreases.   

V.  Concluding Remarks 
 
Overbooking is one of the core
a
to assist them in making overbooking decisions.   According 
to  several  journal  articles,  some  overbooking  models  in  
practice  assume  that  the  show demand is the product of 
the overbooking level and the show-up rate.   However, it 
follows from  probability  theory  that  the  random  show  
demand  follows  a  binomial  distribution, when each 
reservation shows up independently and with the same 
probability.   The product form specified in the airline's 
decision model is incorrect, and a model misspecification 
occurs.   In this article, we explore the consequences of the 
modeling error. 
We  use  Monte  Carlo  simulation  to  estimate  the  per-
flight  cost  when
consider three show-up rate distributions, namely normal, 
beta, and degenerate.   The show-up rate parameters are 
periodically updated from the historical records.   From the 
first set of the experiments, we find that the long-run 
average cost with the deterministic model converges to a 
single point with probability one, regardless of the initial 
show-up rates.   In the second set of the experiments, the 
percent differences from the optimal solution range from 4 
to 25.   The smallest difference corresponds to the beta 
model.  Furthermore, the percent difference increases as the 
show-up probability decreases.   
There are several possible extensions to this article.   For 
example, how often should the 
rate parameters?  Which forecasting technique would be 
robust to the model misspecification? If the airline is 
endowed with the specification test, how long would it take 
to detect the modeling error?  We hope to explore these and 
other related questions in the future.   
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